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Executive Summary 

Lawrence Livermore National Laboratory (LLNL) was tasked by the Department of 

Homeland Security (DHS) Science and Technology Directorate (S&T) with developing 

an automated target recognition algorithm for finding objects of interest in checked 

baggage at airports.  The project used x-ray computed tomography (CT) data collected on 

a medical scanner of various simulated checked bags.  Target objects of interest include 

clay, rubber, and saline in various concentrations.  The final results are 93.9% probability 

of detection (PD) with 11.9% probability of false alarm (PFA) on all targets and 100% 

detection for pseudo target sheets.  This result is achieved by using a three-stage 

algorithm made up of segmentation, post-processing, and feature extraction and object 

classification.  The segmentation proved to be the most important stage and it involves 

merging two distinct segmentation results followed by a set of algorithms for cleaning up 

the merged segmentations.  The first segmentation algorithm operates on planar 10x10 

voxel slabs (two- dimensional segments) in the three spatial planes.   The segmenter   

calculates a probability that each slab in the image is a part of a target, determines if the 

probability was above a threshold, and then merges all connected slabs together.  The 

second segmentation algorithm is an ensemble segmenter, which generates a set of 

possible segmentations through random permutations and computes an average behavior.  

The distinct properties of these segmenters results in a merged segmentation with 

superior results than either segmenter alone.  The merged segmentation is “cleaned up” 

using post processing techniques to achieve the final labeled images.  The final 

classification stage made use of a random forest classifier algorithm to discriminate 

targets from non-targets based on a set of features of the segmented objects partially from 

the voxel slabs and partially from the individual voxels.  Features include standard 

statistics such as mean, median, and standard deviations of the density, features capturing 

some aspects of texture, and some features about the surrounding bag structure.  In 

addition to the detection and false alarm results above, we show how the algorithms can 

be trained to “overfit” to the limited data set provided and achieve near perfect results 

(PD=100% and PFA=0%).  This over-training is not recommended for long-term 

operation, but instead is meant to demonstrate how test design is an important factor in 

aviation security.  Possible improvements to the algorithm and the testing methodology 

(including blind testing) are also presented. 
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COE Task Order 4: LLNL Final Report on Automated Target 

Recognition 

1 Introduction 
The Department of Homeland Security (DHS) Science and Technology Directorate 

(S&T) has been supporting Centers of Excellence (COE) to encourage third-party 

participation in support of the DHS mission.  The COE known as “Awareness and 

Localization of Explosives-Related Threats” or ALERT centered at Northeastern 

University is tasked with improving effective characterization, detection, mitigation and 

response to explosives-related threats facing the country and the world.  A Task Order for 

ALERT (the fourth one, or TO4) was to develop automated target recognition (ATR) 

algorithms for finding target objects of interest in checked baggage at airports using 

computed tomography (CT) scanners. 

 

Five academic and laboratory-based teams worked independently to develop these ATR 

algorithms.  The Lawrence Livermore National Laboratory (LLNL) was one of the five 

participants and has developed an automated target recognition system that is described 

in this report.  As a way to test the performance of each of the systems, ALERT acquired 

x-ray CT images of known targets in luggage bins that were used by all teams.  The 

experimental data consisted of 3D single-energy x-ray CT volumes collected on an 

Imatron medical CT scanner.  There were 93 different targets many of which were 

scanned in multiple bags, configured in luggage bins simulating bags
1
 that were scanned 

and resulted in 188 volumetric CT datasets.  The bags consisted of 421 target objects, 75 

psuedo-targets and 1371 not target objects.  An ALERT team acquired the data and 

identified the known “ground truth” by hand-labeling the objects in each image.  ALERT 

also provided to the teams a common scoring program that accumulated the ATR output 

into a tabular format for cross-comparison.  More details of the experimental 

methodology are available in (ALERT, 2014) .   

 

For this project, the target objects of interest included clay, rubber, and saline in various 

concentrations, and a powder.   The objects were placed in the bags in various shapes and 

configurations including blocks, bags, sheets, and other amorphous forms.  The objective 

was to start with reconstructed voxel image data and create a set of labeled segments of 

the images where each label corresponds to a detection of an object of interest (target or 

non-target).  According to the scoring criteria, a detection is counted if the label segment 

has a precision greater than 50% and a recall greater than 50% for bulk objects and a 

precision of 20% and recall of 20% for sheet objects.  (Sheets, being more difficult to 

isolate for CT, were treated differently.) For pseudo-target sheets the precision and recall 

requirements were 10% for each.  Precision is defined as the percentage of the labeled 

segment that overlaps with the labeled ground truth. Recall is the percentage of the 

labeled ground truth object of interest that is correctly labeled as an object of interest.  

The bags/bins were also packed with other objects such as water, electronics, other types 

of rubber, clothes and assorted other common objects.  A full description of the test plan 

                                                 
1
 Since these bins were simulating luggage, we will refer to them as “bags” throughout. 
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is available in (ALERT, 2014).   The available data consisted of 188 bags with various 

targets and labeled images with the ground truth.  The ground truth was determined with 

a semi-manual process.  All 3D reconstructed volumes and ground-truth labeled volumes 

were made available.   

 

The final results with our system achieved 93.9% probability of detection with 11.9% 

false alarm with 100% detection for pseudo-target (PT) sheets.  The full results are shown 

in Table 1.   

 
Table 1. Final Results from Automatic object recognition at LLNL. 

    
No special rules  (except  

for PT sheets) 

Object 

Type 

Object 

Subtype 

Level of 

Difficulty 

Num 

Objects 

Num 

Detected PD [%] 

Target All All 407 381 93.6 

Target Clay All 111 107 96.4 

Target Rubber All 158 150 94.9 

Target Saline All 138 124 89.9 

Target Bulk All 270 251 93 

Target Sheet All 137 130 94.9 

      
Target All Low 77 75 97.4 

Target Clay Low 29 29 100 

Target Rubber Low 22 22 100 

Target Saline Low 26 24 92.3 

Target Bulk Low 56 54 96.4 

Target Sheet Low 21 21 100 

      
Target All High 317 294 92.7 

Target Clay High 82 78 95.1 

Target Rubber High 125 118 94.4 

Target Saline High 110 98 89.1 

Target Bulk High 201 185 92 

Target Sheet High 116 109 94 

      
Pseudo-

target 
Sheet High 10 10 100 

   

Num Non-

targets Num FAs PFA [%] 

   
1371 163 11.9 

    

Num Scans 

with FAs 

Avg Num 

FAs 

    
110 1.57 
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2 Algorithm Architecture and Philosophy 
A general pipeline of the detection and classification algorithm is shown in Figure 1. 

Overall the system consists of three stages.  The first stage consists of a pair of 

segmenters designed with different properties and a merging algorithm.  The second 

stage consists of a collection of algorithms for cleaning up various issues with merged 

segmentations and specific algorithms for detecting and extracting sheets.  The third and 

final stage contains a feature extracter for the labeled objects and a classifier to 

discriminate targets from non-targets.   

 

A set of design principles guided the architecture.  These included compatibility with new 

targets, and or different datasets; and separability or the ability to isolate and assess each 

individual algorithm components and replace it independent of the other components.  

Each stage of the process pipeline applies additional information extracted from the 

training data set to improve the final results and was examined and tested in isolation and 

in its relation to the entire process.  Separability was maintained by defining an interface 

for each step, typically consisting of output files, and a testing framework that evaluated 

the effect of each individual algorithm on the results.  Each stage of the algorithm could 

read in a file and output a file that could be later examined and tested or work in 

conjunction with the rest of the pipeline.  

 

 
Figure 1. The ATR pipeline consisted of three stages. 

 

3 Stage 1: Segmentation 
 

The most complex part of the algorithm is the use of two independent segmenters.  Early 

on in the development process it was determined that in order to meet the precision and 

recall specifications for this test the segmentation had to be as accurate as possible as 
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future steps would rely on having accurate segments from which to extract features.  It 

was also determined that the segmenter had to include some degree of classification in 

order to minimize false alarms.    Based on the initial explorations, two distinct 

approaches were undertaken for the segmentation.  The first, denoted herein as 

“probability segmenter”, described in Section 3.1, was developed specifically for this 

project and the second, the “ensemble segmenter”, was based on ongoing research into 

segmentation at LLNL that was developed prior to this project and tuned for the purposes 

of this project and is described in Section 3.2.  

 

3.1 Probability Segmenter 
The basic premise of the probability segmenter consists of labeling the voxels that have a 

high probability of being part of a target and removing all other voxels from further 

consideration.  It operates in four steps:   

1. Separate all the voxels into 10x10x1 voxel slabs and compute a set of features  for 

each of them (further details are provided in Section 3.1.1); 

2. Compute the probability that each voxel slab is a member of a specific target type 

based on the set of features  (further details are provided in Section 3.1.2); 

3. Apply a threshold on the probabilities in order to map them into binary values that 

indicate whether or not a voxel slab is a member of a target. 

4. Connect all voxel slabs above a threshold into individual labeled segments. Voxel 

slabs with probabilities below the threshold are discarded. 

 

 

The COE task established that in order for a labeled segment to be considered a detection, 

the segment had to capture at least 50% of the labeled ground truth voxels for bulk 

objects and 20% for sheet objects.  Therefore, the aim of the probability segmenter is to 

identify at least 50% of the voxels from all bulk objects of interest as potential targets, 

and at least 20% for sheet targets.  To improve operation of the segmenter, an additional 

internal goal for this algorithm was adopted which was to capture at least 70% of the 

voxels from 70% of the objects of interest.  This second goal ensured that the more easily 

identifiable objects are segmented cleanly. 

 

3.1.1 Voxel Feature Extraction 
  The image voxels were separated into 10x10x1 voxel slabs aligned with each of the 

three planes of the 3D image with 50% overlap.  An illustration of these slabs in all three 

planes and the outlines of the different slabs are shown in Figure 2.  Each slab consisted 

of 100 voxels, representing a tradeoff between statistical information and target 

resolution.  Aligning along the three dimensions coupled with the small size of the slab 

allows detection of sheets in any alignment.  In the case of the sheets, this approach is 

capable of capturing enough data of the thinnest target sheet in this test even at 45 degree 

angle with respect to the image alignment if the slabs are overlapped.  This is based on 

the given dimensions of the minimum sheet size and the given voxel dimensions.  The 

voxel dimensions are 1.5-by-1.5-by-1.5 mm.  The minimum sheet width was 1/4 inch or 

6 mm.  At a 45 degree angle the sheet would occupy five voxels along one dimension, 

which covers half the voxels in some slab, allowing for statistics such as the median to be 
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calculated based on these voxels.  Some pseudo-targets had dimensions smaller than the 

listed dimensions in mass or thickness.  The minimum target mass 250g. 

 
Figure 2. Voxel Slab Construction was performed in all three planes of the reconstructed CT volume. 

For each of the slabs a set of 13 features was computed.  The mean, median, mode and 

trimmean capture the density of the slab.   The trimmean is the mean of the middle 90% 

of the data. The standard deviation, range, and 90% range capture the total variation in 

the slab. Six features based on the discrete cosine transform (DCT) of the data capture 

some aspects of the texture of the slab.    Similarly to the Fourier transform, it uses 

sinusoidal functions as a basis for decomposing data.  The Fourier transform uses 

complex exponentials, whereas the DCT uses only cosine functions and has the 

advantage of only producing real valued results.    Taking the DCT of a 10x10 image 

produces a 10x10 result.  For future discussion the element at position [i, k] will be 

referenced as dctik, so the element at position [2, 2] will be dct22.  The dct11, or the 

result at position [1, 1], is equivalent to the mean value. The values along the diagonal 

capture the non-directional spatial variation in the data, which is primarily what we are 

interested in.  Six features were extracted from the DCT:  dct22+dct33, dct44+dct55, 

dct66+dct77, dct88+dct99, dct1010, and the sum(DCT)-trace(DCT).  The trace of a 

matrix is the sum of the diagonal elements. The last feature captures all off-diagonal 

elements of the DCT. The diagonal elements represent rotationally invariant textural 

features. A detailed study was undertaken to identify the best classifiers and best features 

to use in discriminating between the different target types.  The full details are available 

in Appendix A. 

 

3.1.2 Voxel Classifier 
In typical bag images, the majority of voxels are associated with non-target objects.  The 

goal of the voxel classifier is to filter out the non-target voxels.  The motivation for this 

step is two-fold.  First, removing most of the non-relevant voxels should improve the 

accuracy of the segmenter, by reducing the number of decisions it needs to make.  

Second, by reducing the data to a small fraction of its original size, the complexity of the 

following steps in the segmenter, as well as in the subsequent steps of the ATR pipeline, 
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are also reduced.  Hence, an effective voxel classifier should make the entire ATR 

pipeline faster and more accurate. 

 

The voxel classifier takes as input a vector of features for each voxel slab and produces as 

output the probability that the voxel slab belongs to a target object.  By applying a 

threshold to the vector of probabilities for all voxel slabs, we obtain a binary value 

indicating whether or not each voxel slab belongs to a target object.  The voxels that are 

classified as non-target are removed from the image and from any further processing.  

The remaining sparse image is then sent forward to the next step in the probability 

segmenter, the connected component algorithm.  The goal of the voxel classifier is to 

remove as many non-target voxels as possible, while retaining the vast majority of the 

target voxels.   

 

The voxel classifier consists of four distinct classifiers, one for each target subtype: clay, 

powder, rubber, and saline.  Each of these classifiers takes as an input a vector of features 

of a voxel, and produces a binary output indicating whether the voxel is a target of the 

corresponding subtype or not.  Voxels that are classified as a target by at least one of the 

subtype classifiers are kept in the image, and the voxels that are considered non-target by 

all classifiers are removed from the image.  A diagram of the voxel classifier is shown in 

Figure 3. 

 

The voxel classifier training is a supervised step, meaning that it learned the features 

associated with targets versus non-targets from labeled training data.  Training data 

consisted of a small fraction(2%) of the voxel slabs associated with labeled target data.  

Inaccuracies in the ground truth can lead to errors in the training set but in this case the 

number of samples is large that the effect of the mislabeled voxel slabs is minimal.  An 

exception to this is noted later for the case of some pseudo-target sheets.  The training 

data itself consists of a set of training examples, in this case, a set of voxel slabs, each of 

which is represented by a label (target/non-target) and a vector of features.  Once the 

voxel classifier is trained, it can then be used to classify new data. Training involves 

generating a set of decision trees using random choices for splits and only a small 

subsample of the training data each of which is setup to optimally classify the subset of 

data it is given.   We explored a variety of supervised machine learning algorithms (see 

Appendix A), and obtained the best results using random forests (Breiman, 2001), which 

is the algorithm that we included in our ATR pipeline as the voxel classifier. 
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Figure 3:  The voxel classifier is composed of four random forests, one for each target subtype: clay, powder, 

saline, and rubber.  A voxel is classified as target if it is classified as positive by any one of the four random 

forests.  Those voxels are kept in the images that are then subsequently sent to the segmentation step of the ATD 

pipeline.  Voxels classified as non-target by the voxel classifier are removed from the images. 

3.1.2.1 Random Forests 
A random forest is a classification algorithm that consists of an ensemble of decision 

trees, where each tree is built with an element of randomness as described below.  Each 

decision tree in the forest is a classifier that takes as input a feature vector and produces 

as output a binary classification, in this case, target or non-target.  The random forest 

classifies a voxel slab by submitting its feature vector to each one of the trees and 

subsequently aggregating the outputs of all the trees into a final binary classification.   

 

Decision trees operate by recursively partitioning the feature space of the data into 

exhaustive and mutually exclusive partitions.  Each one of the partitions is based on a 

single feature and is associated with a label, in our case, target or non-target.  Partitions 

are called “nodes” in the tree, and terminal nodes are called “leaves.”  Given a training 

data set, a decision tree is built by recursively finding a combination of feature and 

threshold that best splits the data, where best is defined by how pure the derived 

partitions are in terms of labels.  This process is greedy, that is, at each step the 

combination of feature and threshold that generates the best partition is chosen.  This 

splitting is repeated recursively for each child partition until the partitions are pure (all 

training observations have the same label) or until a stopping condition is reached, such 

as a minimum leaf size  Classification of a new observation is then obtained by 

interrogating its feature vector at each split until a leaf is reached.  The new observation 

is then labeled based on the label associated with that leaf. Figure 4 shows a diagram of a 

simplified decision tree.   

 

In random forests, each decision tree differs from all others to different degrees.  This 

diversity is obtained by introducing randomness to the growing of the trees, as follows.  

Given a training set with N observations, each tree is grown using a training set 

consisting of N observations sampled at random and with replacement from the original 

Clay Voxel Classifier 

Powder Voxel Classifier 

Saline Voxel Classifier 

Rubber Voxel Classifier 

target 

target 

target 

target 

Non-target 

Non-target 

Non-target 

F
ilt

e
re

d
 D

a
ta

s
e
t 

Voxels removed from images 

Voxel Classifier 

Voxel&

Figure 1: The voxel classifier is composed of four random forests, one for

each target subtype: clay, powder, saline, and rubber. A voxel is classified

as target if it is classified as posit ive by any one of the four random forests.

Those voxels are kept in the images that are then subsequent ly sent to the

segmentat ion step of the ATD pipeline. Voxels classified as non-target by

the voxel classifier are removed from the images.

The voxel classifier is a supervised step, meaning that it learns the fea-

tures associated with targets versus non-targets from labeled training data.

The t raining data consists of a set of t raining examples, in this case, a

set of voxels, each of which is represented by a pair consist ing of a label

(target / non-target ) and a vector of features. Once the voxel classifier is

t rained, it can then be used to classify new data. We have explored a va-

riety of supervised machine learning algorithms (see Sect ion 4.3), and have

obtained the best results using “ random forests,” which is the algorithm

that we have included in our ATD pipeline as the voxel classifier.

A random forest is a classificat ion algorithm that consists of an ensemble

of decision t rees, where each t ree is built with an element of randomness as

described below. Each decision t ree in the forest is a classifier that takes as

input a feature vector and produces as output a binary classificat ion, in this

case, target or non-target . Therandom forest classifiesa voxel by submit t ing

its feature vector to each one of the t rees and subsequent ly aggregat ing the

outputs of all the t rees into a final binary classificat ion.

Decision t rees operate by recursively part it ioning the feature space of

2
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training set.  Given a feature vector of length M, at each split of each tree, a number m << 

M of features is randomly selected out of the M features and the best split is chosen based 

on only the m features.  Together, these two steps allow for diversity within the random 

forests, such that the ensemble is both more robust and effective than the individual parts. 

Inherently a single tree is highly over-trained and specific to a single training set, 

however, the random sampling of the training set and aggregation of multiple trees results 

in a much more robust classifier. 

 

 
Figure 4:  Decision Tree Example. Internal nodes are represented as boxes with black borders, and leaves as 

boxes with red borders.  The labels within the internal nodes indicate the feature used at that node to split the 

data.  Decision trees provide a partitioning of the feature space of the data into disjoint sets.  Each partitioning is 

associated with a probability vector of the possible outcome classes.  Classification of a new observation is 

obtained by mapping the features of the new observation to the partitioning of the data, until the new 

observation is associated with leaf.  The class assigned to the observation is that associated with its leaf. 

In addition to producing the best results, we chose to use random forests as the voxel 

classifier for a number of other reasons.  Random forests are fast, they scale well both 

with number of observations as well as with the number of features.  They are robust to 

anomalies.  They account for interactions among features and non-linear relationships.  

Feature selection is obtained automatically, as part of the growing of the trees, and 

measures of relevance of each feature can be easily computed.  Overall, random forests 

are very effective classifiers and we use them in our pipeline as the basis for a segmenter. 

 

Another benefit of random forests is that there are relatively few parameters to tune 

compared to other classification algorithms.  There are three primary parameters that 
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Figure 2: Decision t ree example. Internal nodes are represented as boxes

with black borders, and leaves as boxes with red borders. The labels within

the internal nodes indicate the feature used at that node to split the data.

Decision trees provide a part it ioning of the feature space of the data into

disjoint sets. Each part it ioning is associated with a probability vector of the

possible outcome classes. Classificat ion of a new observat ion is obtained by

mapping the features of the new observat ion to the part it ioning of the data,

unt il the new observat ion is associated with leaf. The class assigned to the

observat ion is that associated with its leaf.
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affect the performance of random forests: the number of trees, the minimum size of 

terminal nodes, and the number m of features tested at each split.  For each of these 

parameters there is a trade-off.  Increasing the number of trees, up to a certain limit, 

increases the accuracy of the forest, but also increases the computational burden, both in 

terms of memory and computing power.  Decreasing the minimum size of leaves allows 

for stronger individual trees at the detriment of computational performance.  Finally, 

increasing m increases the strength of the trees (i.e., makes the individual trees better 

classifiers) but it also increases the correlation of the trees, making the ensemble of trees 

as a whole weaker.  We have performed sensitivity analyses to understand how these 

parameters affect the performance of our random forests and to tune the forests used as 

our voxel classifiers.  Some of the results of this exploration are described in Appendix 

A.    

 

To summarize, the voxel classifier is composed of four random forests, one for each 

target subtype (powder, saline, rubber, and clay).   Each random forest is composed of 

500 trees, where the minimum size of the leaves is one.  The number of variables tested 

at each split, m, is three.  The details and rational behind each of these parameter choices 

is discussed in Appendix A.  The voxel classifier labels as targets voxels that are 

classified as positive by at least one of the random forests. Voxels classified as target by 

the voxel classifier are kept, and those classified as non-targets are removed from the 

image.  The sparse images containing only voxels classified as targets are then sent 

forward to the next step in the ATR pipeline, image segmentation. 

 

3.1.2.2 Voxel Classifier Results 
The results presented here were obtained using a voxel classifier, as described in previous 

section: four random forests (one for each subtype), each of which containing 500 trees, 

and having minimum leaf size of one and three features tested at each split.  The 

complete set of features provided as input to the random forests consisted of the 

following summary statistics for each voxel slab: mean, median, standard deviation, 

range, dct22+33, dct44+55, dct66+77, dct88+99, dct1010, and dctA-trace.  As described 

in Section 3.1.1, the features starting with prefix “dct” are elements of the inverse cosine 

transform. Overall, for all four subtypes classifiers, the mean and median of the voxel 

intensities were the most informative features (see Figure 5), followed by standard 

deviation and range.  In the case of rubber the range is particularly useful likely due to the 

relative consistency of the density in the rubber objects Figure 10 shows the distribution 

of the range feature for the various object types.   
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Figure 5:  Relative importance of features for each of the four random forests (saline, rubber, powder, and clay) 

of the voxel classifier. The mean decreased Gini coefficient is a measure of how each feature contributes to the 

homogeneity of the nodes and leaves of the trees in the forest.  The higher the mean decreased Gini coefficient of 

a feature, the more important it is for the random forest. 

 
Table 2:  Percentiles of number of voxel slabs of objects of each class that were correctly classified by the 

corresponding classifier. 

 
 

In order to minimize over-training on the data, we perform three-fold cross-validation.  In 

other words, the training data is randomly partitioned into three complementary sets, such 

that one of the sets is used to train the algorithm, which is then applied to evaluate the 
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data in the remaining two sets.  Using this scheme, voxel slab features are only evaluated 

by random forests that have not seen that observation while being trained.   

 

All four subtype classifiers produce results with relatively high accuracy, with all of them 

having an area under the performance curve(AUC) at or above 0.9. AUC is the total area 

under a plot of the PD vs PFA created by varying the threshold at which a voxel slab is 

classified as target vs non-target and is a measure of the classifier performance.  Overall, 

the best results were obtained for the clay classifiers (AUC ~ 0.97), and worst results for 

powder classifiers (AUC ~ 0.899), as shown in Figure 6.  Table 2 shows the quantiles of 

the percentage of voxels of objects of a given class (saline, rubber, powder, and clay) that 

were correctly classified by the corresponding classifier.  For saline, rubber, and powder, 

all objects had at least 69% of voxels correctly classified.  The median of the fraction of 

voxels of objects correctly classified by the corresponding classifier was 0.92, 0.91, 0.89, 

and 0.93, for saline, rubber, powder, and clay, respectively. 

 

 
Figure 6 AUCs obtained by classifiers for the four object subtypes: saline, rubber, powder, and clay. Each box 

represents three AUCs, one for each of the three cross validation sets. 

On a per-object basis, all target objects, except for one (object id = 7011), had at least 

84% of its voxels included in the filtered set.  Object 7011, a bulk object consisting of 

two blocks of clay merged, had 56% of its voxels included in the filtered dataset.  The 

percentage of voxels of each object from the cleaned set retained in the filtered set is 

show in Figure 7.  Objects 8024 and 8026 which were pseudo-target sheets were also 

characterized by lower detection rates likely due to the lower accuracy of the ground truth 

in those objects.   
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Figure 7: (A) Percentage of voxels of each object from the original dataset included in dataset filtered by the 

voxel classifier colored by object type.  (B) Histogram of number of objects distribution as a function of the 

percentage of voxels included in filtered set.    

3.1.2.3 Voxel Classifier Implementation 
Using the information from the classification analysis we trained four classifiers using a 

subset of the calculated features.  All four classifiers used the median, standard deviation, 

and range, and one of the DCT features.  The rubber classifier used dct88+dct99, the 

saline and clay classifier used dct44+dct55 and the powder classifier which was later 

disabled since we were not required to detect powders, used dct22+dct33.  Probability 

density functions for the various properties are shown in Figures 8-13. These figures 

illustrate that while the median is clearly the dominant feature for discrimination, the 

other features do provide some additional discrimination capability.  Improved 

discrimination might be possible with ratios of DCT elements but this potential was not 

fully explored in the course of this project.   

 

In order to better detect some pseudo target sheets and a few other anomalous objects it 

was necessary to select some specific bands in the rubber classifier and clay classifier to 

ensure sufficient detection of those objects.  All voxel slabs with median intensity values 

of [1060 to 1150] for rubber and [2200 to 2300] for clay were labeled as high probability 

detections.  The likely cause is due to some mislabeling in the pseudo target sheets along 

with a different type of rubber, and some deviations in the specific objects in question 

from the normal “clay-like” behavior.    

 

Final results from the probability segmenter indicated that the high threshold captured at 

least 60% of the voxel slabs from 69% of the targets with a false alarm rate of 9%.  A 

majority of these false alarm voxels are contained in a few objects or were removed, as 

they were isolated from other potential targets.  The low threshold met the goal of 

detecting all targets at the required thresholds with a false alarm rate of 16% of the voxels 

in a bag.  After the connected component segmentation numerous objects were merged 

together which reduced the PD significantly.  A more sophisticated method of 

segmentation could have been used but it was not necessary when this method is used 

combination with the rest of the system.   
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Figure 8 Voxel Slab Median Value Distributions 

 
Figure 9 Voxel Slab Standard Deviation Distributions 
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Figure 10 Voxel Slab Range Distributions 

 

 

 
Figure 11 Voxel Slab dct22+dct33 distributions 
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Figure 12 Voxel Slab dct44+dct55 distributions 

 
Figure 13 dct88+dct99 distributions 

Each voxel slab was fed into each of the different classifiers and reported as a probability 

from 0 to 1 that the voxel slab contained target voxels.  As part of the training, two 

thresholds were chosen for each target type.  The higher threshold captured 80% of the 

voxels from 90% of the targets and the lower threshold captured 50% of all the targets 

based a small training set of data.  

3.1.3 Connected Components Algorithm 
The voxels identified as having probabilities above the high and low thresholds were 

merged using a connected components algorithm for each of the target types.  The 

connected component algorithm identified all voxels as having neighbors in any of the 

three dimensions as being connected and part of the same object.   Isolated voxel slabs 

typical of noisy pixels were removed from the labeled set.   Single planes of voxel slabs 

were also removed from the connected object as this type of structure was typical of 
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some forms of x-ray reconstruction artifacts namely metal streaking artifacts.  The 

removal of these artifacts is an area that could benefit from additional analysis.  For each 

target type areas with high probability were segmented and labeled before repeating the 

process with the low threshold areas.  Segments that triggered thresholds for multiple 

target types were merged or split as appropriate.  Segments formed from the higher 

threshold were kept separate while low threshold segments were merged with segments 

from other target types. This process produced a set of labeled segments for each image, 

resulting in a PD of 61% and a PFA of 91% of the final targets. The primary reason for 

the low positive detection and high false alarm rates was due to the fact that many targets 

were merged together by the simple segmentation process.  Due to the constraints of the 

official test metrics (specifically that segments must meet the 50% recall and precision 

rates), merged targets can simultaneously reduce the positive detection and false alarm 

rates.  Although the performance of the probability segmenter alone at this stage was 

underwhelming, when combined with the ensemble segmenter (see Section 3.2), it leads 

to improvements in both positive detection and false alarm rates, as discussed in Section 

4.  The purpose of this segmenter in the merged pipeline is to complement the ensemble 

segmenter.  If it was operated alone additional complexity in the segmentation process 

and post-processing could improve the results significantly, but this was unnecessary for 

this test when merged. 

 

3.2 Ensemble Segmenter 
 

*  

Note that this segmentation work was performed under the support of LLNL internal 

R&D funding (Laboratory Directed Research and Development Program) for “Coupled 

Segmentation of Industrial CT Images.” The developed segmentation approach was 

applied to the problem of airport security and more specifically to TO4 data. We 

submitted a paper about the algorithm and experiments using TO4, which is currently 

under review and this section was excerpted from the paper (Kim, Thiagarajan, & 

Bremer, (Under Review) A Randomized Ensemble Approach to Industrial CT 

Segmentation, 2015): 

 

 

We developed a highly flexible segmentation approach that uses an ensemble of 

hierarchical segmentations and exploits high-level semantic information to effectively 

find objects. This approach builds multiple hierarchical segmentations to explore as many 

potential ways of segmenting as possible, by randomizing the merging order of segment 

region pairs. Among potential segments in the ensemble, the most likely candidate 

regions are filtered, by incorporating high-level features defining objects. Finally, all 

localized candidates are combined into a consensus segmentation to produce the final 

segments.  
 

This segmentation ensemble approach has several advantages: First, the multiple 

randomized segmentations, some of which are expected to be accurate or sufficiently 

close, compensate for a large variety of noise and artifacts; second, the global search for 

likely objects allows segments at multiple levels of the hierarchy; third, using a simple 
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reference-based scheme, we compare segments to the training data, and robustly identify 

a set of candidate segments likely to describe objects of interest; Lastly, sequentially 

localizing all candidates for a particular object/region, the per-object consensus 

segmentation performs graph-cut segmentation to obtain a final object region, without the 

need to directly estimate the number of objects in the candidates.  
 

3.2.1 Algorithm Overview 
The algorithm begins with supervoxel-based over-segmentation to partition the entire 

volume into small-sized atomic regions, referred to as supervoxels. Then we construct an 

ensemble of bottom-up hierarchical segmentations from the initial set of supervoxels. 

Each hierarchy incrementally merges regions from the previous level. The edge affinity is 

measured as the similarity between their intensity histograms. Suppose w
l
i,j is the edge 

affinity between two regions r
l
i and r

l
j in hierarchy level l. We compute w

l
i,j as  

w
l
i,j = exp( -σ χ2

( H(r
l
i), H(r

l
j))) where H(r

l
i) is the intensity histogram of region r

l
i, and χ2

 

measures the chi-square distance between two histograms, and σ is the parameter for the 

Gaussian radial basis function.  

 

To generate multiple independent segmentations from the same set of supervoxels, we 

randomize the merging order of candidate edges in each hierarchy level. See the paper 

(Kim, Thiagarajan, & Bremer, Image Segmentation using Consensus from Hierarchical 

Segmentation Ensembles, 2014) for more details about how to construct multiple 

randomized hierarchies.  

  

 

Among all potential segments from the ensemble, we extract candidate regions likely to 

be an object of interest. For each potential segment, we first compute its feature set that 

consists of intensity statistics, shape features, area, and volume-to-surface area ratio. We 

then extract a semantic descriptor from the feature using local discriminant embedding 

(LDE), a supervised graph-embedding approach, to compare with supervisory data to 

determine whether or not it is a good candidate.  

 

The final step is to segment multiple objects, given the candidate regions extracted from 

the segmentation ensemble. We segment object regions sequentially in the order of their 

confidence measures until all available candidates are examined, in which we do not need 

prior knowledge of the number of segments. We first sort all the candidate regions in the 

decreasing order of their confidence. We then pick the first available candidate region 

with the highest confidence and collect other available candidates that have a high 

volume overlap ratio with the first region. The collected candidate regions are combined 

into a graph-cut segmentation to obtain a final consensus object region. These regions are 

excluded from the candidate regions, and we continue the per-object segmentation if 

there is still available candidate region. Figure 14 illustrates an overview of the proposed 

approach.  
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Figure 14 An overview of the ensemble segmenters 

3.2.2 Experiments using TO4 Data 
We applied our segmentation technique to the automatic target recognition (ATR) 

systems in the problem of airport security using the TO4 dataset. Here we concentrated 

only on the segmentation stage, aiming to provide a highly accurate segmentation of all 

target objects, without the target classification. For the quantitative evaluation of our 

segmentation, we trained our object classifier (an internal classifier within the ensemble 

segmenter system) using ground-truth labels of 4 different targets and pseudo targets. We 

extracted object features of all ground-truth regions and then extracted their LDE-based 

semantic descriptors. These semantic descriptors were used for extracting candidate 

object regions, as described previously.  

 

In our setup, the only free parameter is the number of hierarchical segmentations, which 

was fixed to 20. We evaluated the segmentation performance of the proposed ensemble 

segmenter, in comparison to existing techniques: the popularly adopted region-growing 

technique and a semi-supervised graph-cuts approach, as shown in Figure 15. For the 

region growing, we manually tuned parameters for the TO4 dataset. For the semi-

supervised graph-cuts, we simulated user’s manual intervention by dilating the ground-

truth label regions, and applied graph-cuts in each of those regions.   Results from the 

scoring mechanism indicated and overall PD of 92% and a PFA of 45%. 
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Figure 15 Segmentation results (SSN: 076, 148) of the proposed algorithm with other methods. From left to right 

in each row, the ground-truth labels, region growing, semi-supervised graph-cuts, and our ensemble segmenter 

3.3 Segmentations Merger 
The final step in the segmentation process is to merge the probability segmenter results 

with those from the ensemble segmenter.  The process chosen takes the segmentation 

from the ensemble segmenter and adds new segments where the probability segmenter 

results contain labels not present in the ensemble segmentation result.   This process 

resulted in a number of extra segments and small pieces but these were straightforward to 

remove of merge in the subsequent processing steps.   

 

Merging segmenters in this way improves the overall results when combined with the 

post processing steps due to the different properties and characteristics of the different 

segmenters.  The ensemble segmenter generally has better looking segments when graded 

by visual inspection but it can miss targets completely, particularly in the case of sheets. 

The missed targets represent a cap on the performance of the ensemble segmenter. 

Though the segments it does label are generally superior to the segments of the 

probability segmenter for the same object, the probability segmenter does not have the 

same theoretical performance limitations.  Therefore, merging the two segmenters can 

raise the performance ceiling of the overall system.  The downside of the probability 

segmenter is its tendency to merge many objects together, which is why the simple 

approach of basically using the ensemble segmenter results and adding any additional 

segments from the probability segmenter to the merged result tends to work.  If it was 

desired to use the probability segmenter alone, additional complexity in the segmentation 

and post-processing steps would be needed to improve the results.  Adding more complex 

merging algorithms into the merger step did not lead to any substantial improvement in 

the final result so they were not included in the final system.   

 

4 Stage 2: Post Processing 
Following the merge step was a series of post-processing algorithms designed to refine 

the segments. Numerous of examples of this type of processing are found in the existing 

literature on this subject.  The patent from Telesecurity (Kwon, Lee, & Song, 

2013)applies many similar techniques and further examples are found throughout the 

project report from TO3 (Crawford, Martz, & Pien).  Sheet detection is also a topic of 

related patents (Eberhard & Meng-Ling, 1998). The distinguishing feature of the post-

processing steps developed for this project is that they operate on voxel slab data vs. the 

original image data. This feature simplified the process significantly and allowed better 
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characterization though at the expense of a small degree of resolution in the final 

segment.  The voxel slabs were recalculated at the beginning of the process using solely 

voxel data from each label.  The slabs started from the lowest indexed voxel from each 

label and progressed in steps of 10 for each dimension.  Overlapping voxels was no 

longer necessary as experiments with different edges or overlapping blocks showed no 

change in the final results calculated by the scoring algorithms   

 

Post processing consisted of a series of algorithms to split segments followed by a set of 

algorithms to merge segments. The first step is a sheet detection process.  The thickness 

of the labeled segment is determined in each of the 3 dimensions.  To be declared a sheet 

a segment had to have a thickness in one of the dimensions between 3 and 16 voxels for 

at least 25% of the segment area in that dimension and cover an area of at least 50 voxel 

slabs, or have thickness of between 12 and 32 voxels over 25% of its surface and cover 

an area of at least 80 voxel slabs.  Once a sheet was detected all “clumps” on the surface 

were removed and declared a separate segment.  This detection scheme was used to 

identify sheets and separate sheets from bulk objects with similar properties.  A clump 

was identified as having a thickness greater than 2 times the sheet thickness and not be 

attributable to a sheet turning a corner.   

 

 The next stage is a statistical splitting routine.  This algorithm computed the histogram of 

the median in the voxel slabs, searched for distinct peaks in the histogram and if the 

peaks met a set a thresholds the object was split.  Specifically, the peaks had to be 

separated by at least 75 intensity levels, and the low point between them on the histogram 

had to be less than 85% of the peak counts.  The split was then done at the minimum of a 

smoothed count value. The smoothing was done using a 20 point moving average filter. 

A check was then done to ensure that the voxel slabs from the different sides of the split 

were in fact in distinct locations in the image if so the object was split.   

 

The third stage was a called a “cube split”  The general idea is to count all the voxel slabs 

from a segment in a 10x10x10 cube then order these counts remove a certain fraction and 

do a connected components analysis on the remaining cubes.  All large (>100 cubes) 

clusters of cubes were then split into new segments.  The effect is to split objects that 

were close together but only touching on a thin set of points or were not touching to 

begin with as a result of the naïve connected components in the probability segmenter or 

merge process.  This process achieves a similar effect to dilation and erosion which is 

another typical technique. 

 

Following the split process, a final merge process was conducted.  The primary statistic 

for merging is the mode of the histogram of medians of the voxels slabs of a segment.  

Distinctly labeled sheets with similar modes were checked for alignment and merged if 

they aligned.  Then objects were checked for similar modes in the histograms, if the 

histograms matched and they overlapped, for large objects the shape and alignment was 

compared and if it matched they were merged, small objects were merged with less 

stringent criteria.  The merging criteria were based on heuristics garnered from a subset 

of the data and subsequently applied to the entire data set.  Based on the amount of 

overlap and the proximity of the histograms and the matching edges of the segment they 
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were merged in entirety or partially. The exact threshold depends on the size of the 

segment and its mode. 

 

 

Once the final segments were determined the voxel slabs were converted into a labeled 

image.  The conversion process mostly consisted of mapping the voxel slabs back onto 

the voxel space in blocks of 10.  However, all voxels with intensity values less than 475 

or greater than 2300 were cut from the final labeled segment.  Small objects that could 

not meet the minimum mass threshold established by this project were also removed.  

Mass per voxel was approximated by intensity.   

 

5 Stage 3:  Feature Extraction and Object Classification  
The segmentation step labels segments as targets, but there are a large number of false 

positives.   That is, a large number of the segments represent non-target objects.  The goal 

of the “object classifier” is to filter out these false positive segments, reducing the 

probability of false alarm (PFA).  Hence, the object classifier takes in a list of segments, 

and for each of those, it determines whether it should be labeled as target or non-target.  

In the best case scenario, the object classifier reduces the PFA of the pipeline close to 

zero, while maintaining intact the positive detection (PD) rate. 

To complete this process a set of features was extracted from each of the segments.  

1. Mean of original image voxels 

2. Standard deviation of original image voxels 

3. Mean of voxel slab medians 

4. Median of voxel slab medians 

5. Standard deviation of voxel slab medians 

6. Median of voxel slab standard deviations 

7. Median dct22+dct33 

8. Median ((dct44+dct55)/( dct22+dct33)) 

9. Median voxel slab range 

10. Mean Voxel slab range 

11. Median dct44+dct55 

12. Median dct88+dct99 

13. Mode of voxel slab median 

14. Mode of the original image voxels 

15. Lower half width  the mode – first bin with more voxels than 0.5*mode histogram 

count 

16. Upper half width of the mode –last bin with more voxels than 0.5*mode 

histogram higher than the mode 

17. (Optional) 2nd histogram mode peak if present 

18. (Optional)  3rd histogram mode peak if present 

19. (Optional) 4
th

 histogram mode peak if present 

20. Total Bag mean 

21. Fraction of Bag with intensity >2300 

22. Mean of segment bounding box+20 voxels in all dimensions 
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23. Fraction of bounding box with intensity >2300 

24. fraction of voxels in segment between 1060-1150    

 

The final feature was thought that it might help with identifying pseudo target sheets.  A 

study similar to what was done for the probability segmenter was also done with the final 

stage classifier 

5.1 Methodology 
Similarly to the voxel classifier, for each observation the object classifier takes in a 

feature vector and produces as an output a binary classification: target or non-target.  

Whereas in the voxel classifier the input feature vector consisted of features extracted 

from individual voxel slabs, in the object classifier the features are obtained from the 

combination of all voxel slabs associated with a given segment.  We used a total of 24 

object features, as described above. 

 

The object classifier consists of four random forests, each specializing in one of the four 

target subtypes: powder, clay, rubber, and saline.  A segment is deemed to represent a 

target object if it is classified as a target by any one of the four classifiers.   We avoid 

overtraining by using three-fold cross-validation.  For more details on the methodology, 

see Section 3.1.2.  The training set was built by using the provided ground truth to label 

the segments appropriately.   

 

5.2 Results 
One way to measure the performance of the object classifier is by comparing the 

performance of the labeled images produced by the ATR pipeline prior to the object 

classifiers against the performance of the same images filtered by the object classifier.  

Based on the output produced by the T04 evaluation tool, the PD for clay, rubber, and 

saline for the former set of images were respectively 98.2, 96.8, and 94.9, and the PFA 

was 43.1%.  The object classifier was successful in drastically reducing the PFA, from 

43.1% to 11.9%, while decreasing the PD by only very small amounts (PD for clay, 

rubber, and saline were respectively 93.6, 96.4, and 94.9%).  Figure 16 shows the relative 

importance of the segment features in the classifiers.   These results indicate that the mass 

limit is important in filtering out small segments and some measure of the object density 

is next.  The rest of the features show some value but perhaps only in a limited number of 

cases.   A number of examples of the detection results are shown in Appendix B along 

with some cases where the detection failed.   

 

5.3 Improving Results for Corner Cases 
Corner cases are situations where the correct classification requires an adaptation of the 

classification pipeline based on some specific property of the object being detected.  The 

results described above were obtained by “honest” approach, where overtraining was 

avoided to the extent practical.  This is necessary in order for the results to reflect 

expected performance of the ATR pipeline when applied to similar but not-yet-seen data.  

In order to further improve results and achieve the level of accuracy required by this 

competition, PD approaching 100% for all target subtypes and PFA close to 0%, we 
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firmly believe that overfitting is a must, and that is what in fact the vast majority of 

vendors end up doing in order to meet the requirements to get certified.  We show here 

how we can include additional steps, in the form of secondary classifiers that are put in 

place to capture the segments that were erroneously labeled by the classifier as false 

positives, and hence removed from the labeled images.  These secondary classifiers are 

designed based on the specific instances misclassified by our pipeline, and hence when 

applied to the same set of images that were used to create them in the first place, can 

improve the performance of the pipeline to the levels of PD and PFA required.  In fact, 

by modeling specific corner cases, we were able to get the PD for all low difficulty 

targets up to 100%, and reduce the PFA down to 1.1% using these data-derived rules.  

The problem is that these results are misleading, as we do not expect to see these rates of 

positive detections and false alarms in the future when the pipeline is applied to a new set 

of images.   

 

 
Figure 16: Relative importance of features in the construction of the object classifier. The mean decreased Gini 

coefficient is a measure of how each feature contributes to the homogeneity of the nodes and leaves of the trees 

in the forest.  The higher the mean decreased Gini coefficient of a feature, the more important it is for the 

random forest2.   

                                                 
2
 Abbreviations list.  pixelCount: pixel count; svMeanOfMedian: mean of the median of contained 

supervoxels; svMedianOfMedian: median of the median of the contained supervoxels; rawMean: mean 

value of all single voxels; vMode: mode of the voxels; sv80thPercMedian: 80
th

 percentile of the median of 

the contained supervoxels; svMode: mode of the supervoxels; bagMean: bag mean; svMedianRange: 

median range of the contained supervoxels; medianOfDct44-55/Dct22-33: median of dct44-55/dct22-33; 

medianDct44-55: median of dct 44-55 of contained supervoxels; svMedianOfStdev: median of standard 

deviation of contained supervoxels; medianDct88-99: median of dct 88-99; lowerHalfMode: lower half 

width mode (first bin with more voxels than 0.5*mode histogram count);  svMeanRange: mean of range of 

contained supervoxels; svStdevOfMedian: standard deviation of median of contained supervoxels; 

medianOfDct22-33: median of dct 22-33; metalFracInBoundBox: metal fraction in bounding box; 
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6 Discussion 
Of the missed targets, seven were due to inappropriate mergers with other objects, 

another 4 were due to inappropriate split targets, 1 object was split and merged with 

surrounding object and one object was corrupted by metal artifacts that prevented any 

segments from reaching the required detection threshold.  The advantages of our pipeline 

are flexibility to new targets, data, and algorithms and ease by which new techniques and 

components can be integrated.  Novel techniques include the use of texture based features 

in the probability segmenter and final stage classifier, and the use of multiple independent 

segmenters to improve the overall results, the use of voxel slabs for feature generation, 

and the use of random forest classifiers.   

 

Both of the segmenters used contain characteristics that allow them to operate even in the 

presence of x-ray artifacts and thus no particular response to them was required.  The 

probability segmenter masks over them with the use of voxel slabs and filtering of 

anomalous planes and the ensemble segmenter can overcome them with the help of the 

ensembles.   

 

Object shapes play no role in the probability segmenter and only a minor role in the 

training of the ensemble segmenter.  Shape was used in the extraction and detection of 

sheets but not elsewhere and none of the features used in the final stage classifier were 

based on shape.  It is anticipated that similar targets in untested shapes would perform in 

a similar fashion to the current results.   

 

Overtraining, except where intended, was minimized by sequestering a subset of the data, 

in the case of the ensemble segmenter; only using a small fraction of the data, in the case 

of the probability segmenter; and using three-fold cross validation for the object 

classifier.  These methods do not entirely remove the possibility of overtraining—only 

limiting its influence to a certain degree.  However, the nature of the project forced 

training to the test.  The thresholds used in the probability segmenter and in some cases in 

the post processing methods are tied closely to the definitions of a detection and false 

alarm used in the experiment.  In addition, many of the design decisions about where to 

put research effort are driven by the potential for impact on the final results. 

 

6.1 Potential Improvements 
Some initial explorations were done using complete image segmentation based on an 

available segmenter from Statovan (Woodhouse, June 2012). Stratovan was one of the 

teams working on TO3 for segmentation.  The full report from this effort is available in 

(Crawford, Martz, & Pien). The results from the segmentation contained too many 

segments to be of practical use in this project.  Furthermore, objects tended to be split 

                                                                                                                                                 
boundBoxMean: mean of the bounding box; fracDataInRange: fraction of the data between 1060 and 1150 

(attempt to aid in pseudo sheet detection); upperHalfMode: upper half width  mode (last bin with more 

voxels than 0.5*mode histogram higher than the mode); fillFraction: fill fraction of the bounding box; 

metalFraction: metal fraction in bounding box; rawStdev: standard deviation of all single voxels; 

potentialMultiPeak1: potential for single histogram peak; potentialMultiPeak2: potential for double 

histogram peaks. 
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into multiple segments requiring significant added complexity in the pipeline to merge 

them together. It is possible that with further assistance from the authors this segmenter 

could be better tuned to meet the requirements of this project, but for this project it was 

deemed impractical. 

 

The selection of voxel slabs aligned with the 3 coordinate axes was sufficient for this 

project, however it is recognized that certain anomalous arrangements of targets would be 

problematic.  There are a number of mechanisms for addressing this shortcoming.   

Additional planes could be formed with the 45 degree planes, this approach would likely 

be required if even thinner sheets were required to be detected, but it was not necessary to 

achieve the performance goals of this system.  Sheets with thicknesses approaching the 

voxel dimension such as some of the pseudo target sheets are detected as long as a 

significant fraction of the sheet is aligned within approximately 20 degrees of one of the 

image axes, as they all were in this test.  Though not necessary for this test further sheet 

specific algorithms are known and have been developed for similar applications 

(Eberhard & Meng-Ling, 1998).  These algorithms could be applied instead of or in 

conjunction with the applied system.   

 

 

The algorithms used in this project are all prototypes and could be refined significantly 

with further effort.  A rigorous mathematical treatment of the probability segmenter with 

additional exploration of various features could lead to further reduction in false alarm 

rates.  Likewise a rigorous treatment of the merger process and the addition of techniques 

previously developed in the COE task order on segmentation could also lead to further 

improvements.  Some additional treatment of artifacts may be warranted particularly in 

the context of merging split object though these artifacts could also be dealt with by a 

better reconstruction.  Most potential improvements rest in improving the segmentation 

results, which results in better features for the final classifier to act upon. Improvements 

in the overall system will be driven by improvements in segmentation as any 

appropriately applied modern classifier will tend to perform similarly with a given feature 

set. A significant potential area of improvement could rest in the refinement of the split 

and merge process.  Cleaner segments could be achieved by further processing directly 

on the voxel data. Doing so was not necessary for the test criteria in place for this study.  

 

6.2 Algorithm Discussion 
As part of this project we conducted some research to determine what would be required 

to achieve 100% detection with 0% false alarm on the given data set as an example of 

how overtraining would play a role.  Since there was no true blind testing which is really 

required to gauge true performance, the test results can be manipulated or skewed 

through overtraining both intentional and unintentional.  While the ideal result was not 

achieved in practice, the achieved results come close and are shown in Table 10. 

 

The achieved results reduced the PFA to 1.1% and increased the PD to 95.1.  The 

distinction between the two results rests in the use of corner cases.  Objects with specific 

properties can be treated differently than other objects throughout the detection process,  

as these clusters of objects become smaller and smaller at some point the final results 
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becomes highly overtrained to the training set and the performance results from the test 

bear little resemblance to the actual performance of the system.  To achieve the results 

shown small clusters (at least two objects) were formed based on various features of the 

segment such as mean intensity, standard deviation, and number and location of 

histogram modes to distinguish merging and splitting in the post processing steps for the 

final segmentation.  And several secondary classifiers for different object types in the 

object classifier stage.  If this were extended to single object clusters a cursory 

examination indicated another six objects could be detected improving the PD somewhat 

more. Applying similar techniques in the segmenter could potentially detect the 

remaining missed detections.   It is clear that this result is over-trained but the boundary 

between overtraining and not is not particularly clear in this context since in some cases 

the clusters given special treatment could be for physical reasons in other cases they 

could be very specific to the test set and the only way to determine that is through the use 

of a series of truly blind tests. 

 

Throughout development of the pipeline presented here many design decisions were 

made because they did not affect the final test results based on the test criteria given.  The 

effect is that many of the details of the final system become tied to the exact nature of the 

test criteria.  If those criteria were different the resulting pipeline would look very 

different.  The design process by which it was developed would be substantially similar 

but the final pipeline would be different.  For instance if the test metric were based on 

actual precision and recall scores instead of a binary decision, that would have 

necessitated the use of more operations at the individual voxel level to gain a few extra 

percentage points, whereas in present form such processing had no effect on the final 

score and were thus left out.  Many design choices such as the complexity of the 

segmentation merge or the detail of the probability segmenter were made because based 

on the separability of the pipeline we determined that the return in the form of test results 

on effort on that part of the system was low compared with other parts of the system.   

Though more subtle than the blatant overtraining used to detect the corner cases this is 

definitely a form of tuning to the test, overcoming it would require a test scored by a 

several distinct metrics which capture different aspects of system performance.  If future 

projects of similar nature are done significant thought must be placed on the exact nature 

of the scoring to ensure broad coverage and to prevent tuning to the test.   
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Table 3 Final Results with corner cases 

    

No special rules  

(except  for PT 

sheets) 

New rules added for 

corner cases 

Target 

Type 

Target 

Subtype 

Level of 

Difficulty 

Num 

Targets 

Num 

Detected PD [%] 

Num 

Detected PD [%] 

Target All All 407 381 93.6 387 95.1 

Target Clay All 111 107 96.4 107 96.4 

Target Rubber All 158 150 94.9 151 95.6 

Target Saline All 138 124 89.9 129 93.5 

Target Bulk All 270 251 93 256 94.8 

Target Sheet All 137 130 94.9 131 95.6 

       
  

Target All Low 77 75 97.4 77 100 

Target Clay Low 29 29 100 29 100 

Target Rubber Low 22 22 100 22 100 

Target Saline Low 26 24 92.3 26 100 

Target Bulk Low 56 54 96.4 56 100 

Target Sheet Low 21 21 100 21 100 

       
  

Target All High 317 294 92.7 298 94 

Target Clay High 82 78 95.1 78 95.1 

Target Rubber High 125 118 94.4 119 95.2 

Target Saline High 110 98 89.1 101 91.8 

Target Bulk High 201 185 92 188 93.5 

Target Sheet High 116 109 94 110 94.8 

       
  

Pseudo-

target 
Sheet High 10 10 100 10 100 

   

Num 

Non-

targets Num FAs PFA [%] Num FAs PFA [%] 

   
1371 163 11.9 15 1.1 

    

Num 

Scans 

with FAs 

Avg Num 

FAs 

Num 

Scans 

with FAs 

Avg Num 

FAs 

    
110 1.57 15 1 
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7 Summary   
 

In this project we have developed an automated target recognition system that can detect 

targets from baggage X-ray data.  Specific techniques include the use of a probability 

based segmenter based on features from 2D voxel slabs, the use of multiple independent 

segmenters, and random forest classifiers, we used these techniques explore the system 

performance through various stages of operation and explore what would be required to 

achieve perfect results.   
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Appendix A Voxel classifier Evaluation 
 

A.1 Random Forest Parameter Tuning 
Random forests have only a small number of parameters to be tuned.  We have explored 

the impact of two of these parameters, leaf size and number of trees, in the performance 

of voxel classifiers based on random forests. 

 

Contrary to decision trees, in random forests, trees are not pruned.  They are grown until 

pure terminal nodes are reached or until a user-defined leaf size is reached.  Here the size 

of a leaf refers to the number of training examples that are assigned to that leaf.  We have 

compared the performance of random forests with minimal terminal node size of one, 

four, ten, and fifty observations, while keeping all other input parameters equal.  As seen 

on Figure A 1, the random forests were very robust to variations in the size of the leaves, 

as this parameter had no significant impact on their performance. 

 

Similarly to the analysis performed regarding the impact on the size of leaves on 

performance of the random forests, we compared the performance of forests with 10,50, 

100, 500, and 1000 trees, while keeping all other input parameters equal.  Figure A 2 

shows the performance of the random forests of different sizes.  The smallest forests, 

with ten trees, performed worst, showing a wide range of AUC. Overall, starting at 

forests with 50 trees or more, the performances of the classifiers, as measured by AUC, 

were equivalent to one another and stable.   However, when we compare the impact of 

the number of trees per classifier type (clay, saline, rubber, or powder) we see that 

especially for powder, increasing the number of trees from ten up to 500 in the random 

forest leads to incremental improvements in performance.  For this reason, we used 

forests with 500 trees for the results shown in Section 3.1.2.2. 

 
Figure A 1 Comparison of performance of random forest grown with different minimum size of terminal nodes 
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Figure A 2 Comparison of random forest performance based on number of trees. 

 

A.2  Training Set Type 
The bag data provided is unbalanced, that is, the number of voxels associated with non-

targets is much larger than the number of voxels associated with targets.  In particular, 

the percentage of voxels assigned to the categories non-target, saline, rubber, powder, and 

clay are respectively 79.1%, 5.78%, 9.12%, 0.93%, and 5.03%. 

 

Training classifiers with unbalanced training sets can lead to biased classifiers in the 

sense that the majority class will be emphasized over the minority class.  One approach to 

overcome this issue is to down-sample the majority class observations (in this case, non-

target voxels) in the training data in order to obtain a balanced, or close-to-balanced, 

training set, which is a training set in which the number of positive and negative 

examples are approximately the same.  We have built random forests using both balanced 

and unbalanced training set to assess how that affects the performance of the voxel 

classifiers. 

 

For the unbalanced set, we used approximately 10% of the non-target voxels, but the 

training sets were still highly unbalanced.  Table 3 shows the total number of positive and 

negative voxels in the training set for each type of classifier.  For a classifier of a given 

type, only voxels of that type are considered positive voxels, and non-target voxels as 

well as the other three target types are treated as negative voxels. 
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The balanced training sets for each classifier were built to meet two constraints: 1) The 

number of positive and negative voxels must be approximately the same; and 2) The 

training set size must be as large as possible, being limited only by the number of positive 

voxels and the need to perform three-fold cross-validation.  The negative observations of 

each type (non-targets, and the three remaining target types) were reduced via random 

sampling.  This set containing all positive voxels and a sub-sample of the negative voxels 

was then subjected to random sampling to compose the three training sets for the three-

fold cross-validation sets.  Table A 1 shows the number of observations in the balanced 

training set of the four types of targets. 

 

Figure A 3 shows the AUC of random forests built for each one of the four types of 

targets (saline, rubber, powder, and clay) when using balanced versus unbalanced training 

sets.  Using balanced training sets consistently improved the AUC of the random forests. 

 
Table A  1 Number of positive and negative voxel slabs in the unbalanced training sets for each of the four types 

of targets. 

 Positive Negative 

Saline 28633 134039 

Rubber 45439 117233 

Powder 4584 158088 

Clay 25073 137599 
 

Table A  2 Number of positive and negative voxel slabs in the balanced training sets for each of the four types of 

targets. 

 Positive Negative 

Saline 28778 26170 

Rubber 45310 38383 

Powder 4623 4516 

Clay 24985 23610 
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Figure A 3 Performance of random forests based on type of training set: balanced versus unbalanced. 

 

A.3 Classification based on object ID 
In an effort to achieve the best voxel classification results, we have explored the 

performance of random forests trained on a per-object basis.  The rationale behind 

building classifiers per object is that this could potentially be an approximation of an 

upper bound of how well type classifiers could do, recognizing that any actual classifier 

designed in this fashion would likely be over-trained.  The idea is that the variance in the 

voxels properties within each object should be no greater than the variance of the same 

voxel properties for voxels of a given type, regardless of the object ID.  If this is the case, 

then object ID classifiers should yield better prediction accuracy than the type classifiers, 

whose results we have described in Section 3.1.2.1.  Comparing the between and within 

object ID variance in some of the important predictor variables (such as voxel slab 

median) also suggests that building object ID classifiers may lead to improved results 

(see Table 5).   

 

Hence, we have trained 93 different classifiers, one for each object ID (The number of 

object IDs of types saline, rubber, powder, and clay are respectively 29, 30, 7, and 27).  

Figure 11.A shows that there is a modest increase in the median performance of 

classifiers for all types, with the exception of clay.  Interestingly, the variance in the 

performance of the classifiers has increased considerably in contrast to the performance 

of the type classifiers (compare Figures 6 and A 4.A).  A large part of this increase in 

variance of performance is due to the variable size of each object.  Overall, classifiers 

trained on larger objects (a.k.a., objects with a larger number of voxel slabs) tend to yield 

better performance accuracy, as measured by AUC.  Figure A 4.B shows the dependency 
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between classifier performance and number of positive instances in the training set 

(represented by the number of voxels of the corresponding object). 

 

 
Figure A 4 (A) AUCs obtained by classifiers for the four object subtypes: saline, rubber, powder, and clay. Each 

box represents the results from three-fold cross-validation for each classifier of objects belonging to the 

corresponding target type (Number of classifiers of clay, powder, rubber, and saline were respectively 27, 7, 30, 

and 29).  The “x” shows the median AUC of the three-fold cross-validation of the type classifiers shown in 

Figure 6.  (B) AUC of the individual classifiers colored by the target type of each object ID.  The solid lines show 

the regression of AUC as a function of the logarithm of the number of voxels.  The R2 of the regression for 

saline, rubber, powder, and clay were 0.61, 0.61, 0.53, and 0.31, respectively. 

 

 

 

 
Table A  3 Anova model “Median ~ Type + ObjectId”.  Significant F values indicate that ObjectId contributes to 

the variance in the “Median” variable even after “Type” has been accounted for. 

 

 

A.4 Other Algorithms Considered for Voxel Classification 
We considered a variety of machine learning algorithms as candidates for our voxel 

classifier, including random forests, support vector machines (SVM), adaptive boosting, 

nearest neighbors (NN), and naïve Bayes (NB)
3
.  Overall, the best performances were 

obtained using variations of random forests, which was the primary reason for choosing 

this method for inclusion in our pipeline (further, secondary reasons for choosing random 

                                                 
3
 For details on these algorithms, see (Murphy, 2012). 
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forests over the other algorithms explored are described in Section 3.1.2.1).  As explained 

above, the goal of the voxel classifier is to produce a filtered set that is a subset of the 

original data enriched for target voxels (that is, having as many as possible non-target 

voxels removes while retaining as many as possible target voxels).   Table A  4 shows a 

direct comparison of the composition of filtered sets obtained by each of the five 

algorithms explored, both in terms of total percentage of voxels, as well as in terms of the 

percentage of target and non-target voxels.    Naïve Bayes and SVMs tended to classify 

most voxels as “positive”, only removing a small proportion of voxels from the filtered 

set, which was insufficient to adequately aid in the connect component segmentation.  

Nearest neighbors and random forests were the most successful approaches in reducing 

the size of the filtered set (both reducing the data to about 60% of the original number of 

voxels), with nearest neighbors actually being slightly more successful than random 

forests in this aspect.  However, on a per-object basis, random forests were able to retain 

the largest fraction of positive voxels.  Table A  5shows the percentage of voxels of each 

type (nothing, saline, rubber, powder, and clay) from the original dataset included in the 

filtered dataset. 

 
Table A  4 : Summary statistics about filtered sets obtained via different algorithms.  * value excludes object ID 

7011, for which fewer voxels were detected. 

 
 

Table A  5 Percentage of voxels of each type (nothing, saline, rubber, powder, clay) from the cleaned dataset 

included in filtered dataset based on classifier type, using a threshold to obtain voxel TPR >= 0.9. NNb = nearest 

neighbor algorithm using a balanced training set (i.e., a training set with equal size classes). 
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Appendix B Example Results 
 

We show here a number of example cases of the results generated with the described 

pipeline along with some commentary on the results.  All the cases show 3 images 

including a view of the image data.  The same slice of the labeled ground truth data and 

another image of the labeled image data output from the ATR pipeline.  The original 

image data is shown in grayscale with the white being the highest density.  The upper 

limit on the image color scale is 2500.  The target itself is surrounded by red dots.  The 

ground truth data is shown with a white background the object in question is shown in red 

and other labeled targets are shown in green.  The labeled image data is shown with a 

different color for each individual label.  The colors appear in somewhat random fashion. 

For each of the cases examined, the actual precision and recall is shown along with a 

brief discussion about the situation and the effect on the results.   
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Case #1: Bulk with bad streaks caused by metal 

 

 
 

Detected: YES 

Precision: 95.2% 

Recall: 60.1% 

 

Due to the streaking artifacts some parts of the target object were removed in the final 

image, thus the recall is reduced. 
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Case #2: Bulk with bad shading caused by beam hardening and scatter 

 
 

Detected: YES 

Precision: 72.2% 

Recall: 94.2% 

 

The target is merged with the overlapping portion of the sheet on top of the target 

reducing the precision 
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Case #3: Bulk inside electronics 

 

 
Detected: YES 

Precision: 87.5% 

Recall: 79.3% 

 

Some parts of the target image are removed due to the metal artifacts 

 

 

  



LLNL-TR-665543  47 

Case #4: Bulk with texture 

 
Detected: YES 

Precision: 96.5% 

Recall: 73.8% 

 

The ground truth label identifies some of the texture as part of the target.  The ATR 

removes most of them resulting in a lower recall 
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Case #5: Bulk with density close to water (~5% saline) 

 

 
Detected: YES 

Precision: 93% 

Recall: 95.5% 

 

Object was detected with no issues 
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Case #6: Sheet with bad streaks caused by metal, beam hardening and scatter 

 

 
Detected: YES 

Precision: 83.3% 

Recall: 26.7% 

 

The sheet was split into multiple pieces resulting in a low recall.   
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Case #7: Sheet laying on top of another flat object 

 
Detected: YES 

Precision: 21.1% 

Recall: 82.7% 

 

The sheet is detected fully but is merged with the object below it, though still met the test 

criteria.  In this plane the objects are separated but in other planes they appear merged.  A 

more sophisticated splitting algorithm based on image voxel data instead of voxel slabs 

probably would have separated the two objects, but such an algorithm was not necessary 

to meet the requirements of this test.   
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Case #8: Object with lots of photon starvation 

 

 
Detected: YES 

Precision: 71.9% 

Recall: 44.4% 

 

The sheet is split into multiple objects reducing the recall of the object.  Improved 

merging algorithms would probably be capable of merging the object but were not 

necessary for this test.  Note also there is a false alarm object in this frame. 
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Case #9: PT sheet based on thickness  

 
Detected: YES 

Precision: 23.2% 

Recall: 32.6% 

 

This sheet is not particularly well captured but sufficiently to count as a detection in this 

test.  The sheet itself appears merged with some of its surrounding objects.   
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Case #10: PT Powder (based on density, not mass) 

 
 

Detected: NO 

Precision: 49.95% 

Recall: 96% 

 

Powders were not considered detection requirements in the final version of the test so the 

powder detector was mostly turned off, though detection did not count against the final 

score so some were detected.  In this case the object is merged with another object of 

similar size and shape behind the frame in this image so it is not visible.   
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Missed Detection #1: Merger 

 

 
Detected: NO 

Precision: 28.1% 

Recall: 90.4% 

 

The object in question is merged with a non-target object of similar density below it in 

the image. 
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Missed Detection #2: Metal artifacts 

 
Detected: NO 

Precision: 23.0% 

Recall: 38.4% 

 

The object in question is badly distorted by metal artifacts so the object itself was split 

into multiple pieces with different apparent densities, and the ATR did not piece enough 

of it together to count as a detection.   
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There were a total of 13 missed targets after the split and merge stage the exact 

specifications are shown in following table 

 

Bag Target type Prec recall 

13 6047 R 92 47 

15* 6045 C 98 46 

16* 6002 S 33 97 

18* 6025 S 28 90 

18* 6051 C 79 32 

18* 8031 R sh 5 17 

20 6012 S 23 38 

34 6012 S 95 43 

38 6001 S 41 98 

115 6178 S 46 92 

147* 6140 R sh 18 65 

162* 6573 R sh 15 93 

183 6557 S 20 65 

 

 objects were detected in some tests but not final results 

 

 

4 missed detections due to splitting 

7 missed detections due to merging  

2 missed detections had both split and merge issues 


